MBA數(shù)學(xué)之必備公式
2015-10-13 13:36 | 太奇MBA網(wǎng)
管理類碩士官方備考群,考生互動(dòng),擇校評(píng)估,真題討論 點(diǎn)擊加入備考群>>MBA數(shù)學(xué)備考是很多學(xué)員的難題,太奇MBA數(shù)學(xué)老師為大家精心準(zhǔn)備了一些必備公式,學(xué)員必須會(huì)靈活運(yùn)用。
三角函數(shù):
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
公式分類 公式表達(dá)式
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|
-|a|≤a≤|a|
正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圓半徑
直棱柱側(cè)面積 s=c*h 斜棱柱側(cè)面積 s=c'*h
正棱錐側(cè)面積 s=1/2c*h' 正棱臺(tái)側(cè)面積 s=1/2(c+c')h'
圓臺(tái)側(cè)面積 s=1/2(c+c')l=pi(r+r)l 球的表面積 s=4pi*r2
圓柱側(cè)面積 s=c*h=2pi*h 圓錐側(cè)面積 s=1/2*c*l=pi*r*l
弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 v=1/3*s*h 圓錐體體積公式 v=1/3*pi*r2h
斜棱柱體積 v=s'l 注:其中,s'是直截面面積, l是側(cè)棱長(zhǎng)
柱體體積公式 v=s*h 圓柱體 v=pi*r2h
>>>2016年管理類聯(lián)考MBA招生簡(jiǎn)章入口
推薦文章:
2015年管理類專業(yè)學(xué)位全國聯(lián)考數(shù)學(xué)真題(完整版)
太奇王洋老師2015年管理類聯(lián)考數(shù)學(xué)真題解析視頻
推薦專題: